

Aral Sea Basin Transboundary Water Early Warning Bulletin

May - June 2020

UNRCCA

A need for production and periodic and timely issue of the Bulletin as an information product for timely collection and dissemination of information on water-related, environmental, and climatic situation in the Aral Sea basin with the purpose to prevent problems or disputes arising was addressed during a seminar on “Early Warning on Potential Transboundary Water Problem Situations in Central Asia”, which was held in the city of Almaty on 26th of September 2011. The states in the Aral Sea basin have expressed their support for such initiative in discussions with the UN Regional Centre for Preventive Diplomacy for Central Asia. The Central Asian states have repeatedly shown their interest in enhancing the regional capacities for early warning and preparedness to potential hazards.

The Bulletin is a resource, which provides all the Central Asian states and their international partners with improved capacity to monitor regularly the status of transboundary rivers and warn early of potential issues that require attention.

Four early warning bulletins will be issued as part of the Project in 2020. The format and content of the bulletins have been agreed with the client and with all organizations that provided source information. The fourth bulletin in 2020 contains the actual information on the Syr Darya and Amu Darya basins for May and the forecast for June.

Data sources:

- BWO Amu Darya and BWO Syr Darya – data on water resources, their distribution in time (day) and by river reach, operation regimes of reservoirs, inflow (planned versus actual) to the Aral Sea,
- CDC “Energy” – data on operation regimes of hydroelectric power stations (HEPS), electricity generation (planned, actual),
- Aral-Syrdarya BWA – data on lower reaches of the Syr Darya River (components of the water balance from the tail-water of the Shardara reservoir to the Northern Aral Sea),
- Open Internet sources - climatic information.

Digest of CA news for May

Source: cawater-info.net/news/index.htm

- © Breakdown of the Sardoba reservoir. Tashkent and Nur-Sultan discuss flood relief measures regnum.ru
- © Kazakhstan estimates initial damage from the breach at the Sardoba dam theworldnews.net
- © MFA: Kazakhstan will not send a note to Uzbekistan for the dam breach centralasia.media
- © Partial breach of the Sardoba dam causes huge damage to settlements, communications and agriculture podrobno.uz
- © Mirziyoyev: Uzbekistan will invite international experts and make thorough examination of the whole Sardoba dam podrobno.uz
- © The Sardoba reservoir has lost one third of its water kun.uz
- © EIA report: CASA-1000 will not change the operation modes of Nurek and Toktogul dams tazabek.kg
- © Uzbekistan consumes two- to three-fold more energy than developed countries regnum.ru
- © Uzbekistan adopts the country energy concept for 2020–2030 ca-irnews
- © Hydroenergy import from Tajikistan started uz.sputniknews.ru
 - Special representative of the UN Secretary-General supports the efforts of Presidents of Kazakhstan and Uzbekistan in addressing the breach at the Sardoba dam unrcca.unmissions.org
- © NASA publishes images depicting the situation before and after the Sardoba dam breach kun.uz
- © WB allocates additional \$55 million for Kyrgyzstan to improve disaster resilience kabar.kg
- © Uzbekistan gets the status of observer at EAEU sng.today
- © Ecology of the Small Aral Sea is becoming better dknews.kz
- © UNRCCA takes part in an international conference on preventive diplomacy unrcca.unmissions.or
- © Supplemental agreement approved to the commissioning project of the second aggregate at Kambarata-2 kyrtag.kg
- © The Tajik Government reserves the “golden shares” of Roghun and TALCO centrasia.org
- © Meeting of the deputy foreign ministers of Central Asian countries and Russia in the videoconference format uztag.info
- © UN Climate Change launches Russian language communications tools unfccc.int
- © Kazakhstan presented a draft agreement with Uzbekistan on transboundary water management kaztag.kz
- © Kyrgyzstan considers buying electricity from Tajikistan ritmeurasia.org
- © Discussions on the draft national review of SDGs in Uzbekistan: three days, three videoconferences and more than four hundred participants uzdaily.uz
- © EU-CA-Afghanistan videoconference of deputy foreign ministers kabar.kg
- © Bulletin of the Interstate Commission for Water Coordination in Central Asia icwc-aryl.uz

Amu Darya River Basin

Actual Situation in May and Forecast for June

In May, the available usable river water resources estimated as natural, non-regulated river flow plus lateral inflow into the river and minus losses amounted to 6,868 Mm³. The regulated flow of the Amu Darya in the section upstream of intake to Garagumdarya is estimated at 6,189 Mm³ (90% of the forecast).

It is expected that in June the flow of the Amu Darya River in the section upstream of intake to Garagumdarya will be 8,389 Mm³, i.e. will increase by 36%.

Inflow to the Nurek reservoir was 2,063 million m³ in May or 77% of the forecast. Water releases from the reservoir amounted to 1,555 million m³ (91% of planned releases). The reservoir was filled with water by 708 million m³ and reached the volume of 7,003 million m³ by the end of month (96% of BWO Amu Darya's schedule). Water losses in the reservoir were not observed. Unrecorded inflow (estimated as balance discrepancy) was detected in the amount of 200 Mm³ (2.7 % of reservoir's water volume). It is expected that in June 3,582 million m³ of water will flow into the Nurek reservoir. The water volume in the reservoir will increase to 8,123 million m³, and water releases from the reservoir will be 2,464 million m³.

In May, inflow to Tuyamuyun waterworks facility (TMWF) was 3,298 million m³ or 82% of expected flow (estimated from channel balance when forecasting flow transformation along the river channel). The water volume in the reservoirs of TMWF increased from 2,851 million m³ at the beginning of month to 3,242 million m³ at the end of month. Water releases from the reservoirs amounted to 1,611 Mm³ (78% of those scheduled by BWO Amu Darya). Water diversion from the reservoirs amounted to 720 million m³ (84% of the plan). Water losses in the reservoirs of TMWF (calculated as water balance discrepancy) were estimated at 576 Mm³, i.e. about 17% of water volume in the reservoirs by the end of April. Inflow to TMWF is expected to be 4,369 million m³ in June. TMWF reservoirs will accumulate water moderately and their volume will be 3,939 by the end of month. Water releases from the reservoirs are planned in the amount of 2,730 million m³.

Nurek HEPS generated 769 million kWh of electric energy in May (by 43% more than in April). The discharge through turbines increased to 581 m³/s, while the head rose to 225 m. Sterile spills were not observed.

In May, HEPS of the Tuyamuyun waterworks facility generated 46 million kWh; and, the head at HEPS was 20 m.

In May, water along the Amu Darya River was distributed unevenly: in the middle reaches at Kelif g/s (section upstream of intake to Garagumdarya) – Birata g/s (inflow to TMWF) the water shortage was 18% of the plan, and in the lower reaches at Tuyamuyun g/s (tail-water of TMWF) – Samanbay g/s (inflow to the Aral Sea) the water shortage was 31% of the plan. Water balances in the reaches showed negative discrepancies that can be attributed to water losses: 899 Mm³ (15% of river flow at Kelif g/s) in the middle reaches and 544 Mm³ (34% of river flow downstream of TMWF!) in the lower reaches.

In May, flow of the Amu Darya River changed as follows by key gauging station: Kelif g/s – 6,189 Mm³, Birata g/s – 3,298 Mm³ (53% of flow at Kelif g/s), Tuyamuyun g/s (downstream of TMWF) – 1,611 Mm³ (26% of flow at Kelif g/s), and Samanbay g/s (inflow to the Large Aral Sea) - 103 Mm³ (less than 2% of flow at Kelif g/s).

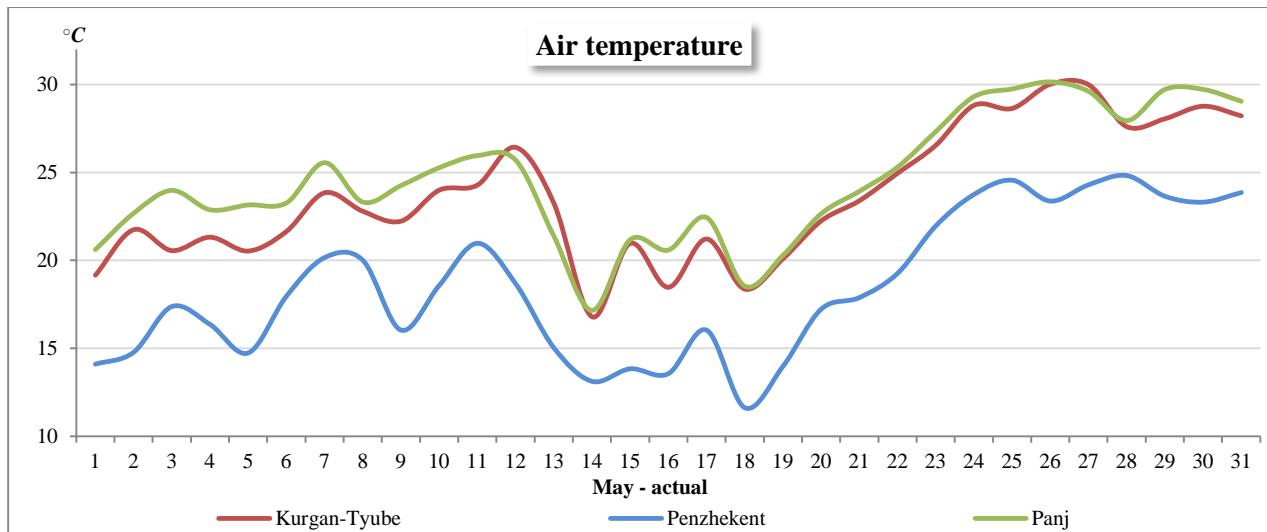
In June, water withdrawal will be increased from 2,271 to 2,958 Mm³ in the first reach and from 964 to 1,909 Mm³ in the second reach. Flow along the river will change as follows: Kelif g/s – 8,389 Mm³ (by 36% more than in May), Birata g/s – 4,369 Mm³ (by 32% more than in May), Tuyamuyun g/s – 2,730 Mm³ (by 69% more than in May), and Samanbay g/s - 281 Mm³.

In May, inflow to the Large Aral Sea from the Amu Darya River and collecting drains (collectors) amounted to 210 Mm³ (68% of expected inflow) and, if we add flow from the Northern Aral Sea to the Eastern part of the Large Aral Sea, the inflow was 423 Mm³ (79% of inflow in April).

In May, the water level in the Eastern part of the Large Aral Sea averaged 28.3 m, the water surface area was 3.9 thousand km², and the water volume was 5.4 km³. In the Western part, the water level was 21.66...21.6 m, the water surface area was 2.2...2.18 thousand km², and the water volume was 32.1...31.9 km³. Evaporation from 1 km² of water surface of the Large Aral Sea was 0.105 Mm³ in May.

It is expected that in June the total inflow to the Large Aral Sea will be 503 Mm³, including 473 Mm³ from the Amu Darya River and collectors and 30 Mm³ as inflow from the Northern Sea. By the end of June, in the Eastern part of the Large Aral Sea the water level will be 28.23 m, the water surface area will be 3.81 thousand km², and the water volume will be 5.14 km³. In the Western part of the Large Aral Sea the water level will be 21.5 m, the water surface area will be 2.15 thousand km², and the water volume will be 31.5 km³. Evaporation from 1 km² of water surface of the Large Aral Sea will be 0.212 million m³ in June.

The sections below show daily and ten-day data on climate and water management (reservoirs, HEPS, water distribution).

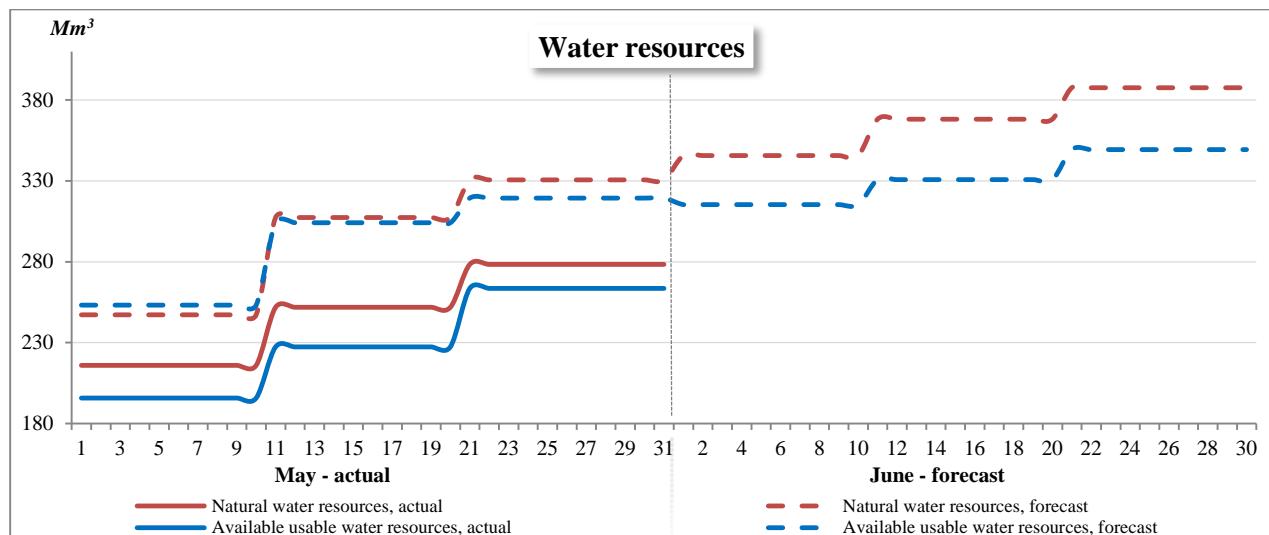


Climate

Weather station Riverhead	Location		
	Latitude	Longitude	Altitude above sea level, m
Kurgan-Tyube	37.82	68.78	429
Penzhikent	39.48	67.63	1015
Panj	37.23	69.08	363

Air temperature (T)

Station	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Panj	$T, {}^{\circ}\text{C}$	Forecast	23.00	22.00	28.00	28.00	30.00	33.00
		Actual	23.49	21.59	28.34			
Kurgan-Tyube	$T, {}^{\circ}\text{C}$	Forecast	22.00	22.00	27.00	28.00	31.00	35.00
		Actual	21.78	21.21	27.72			
Penzhikent	$T, {}^{\circ}\text{C}$	Forecast	17.00	16.00	22.00	24.00	26.00	29.00
		Actual	17.01	15.41	22.80			

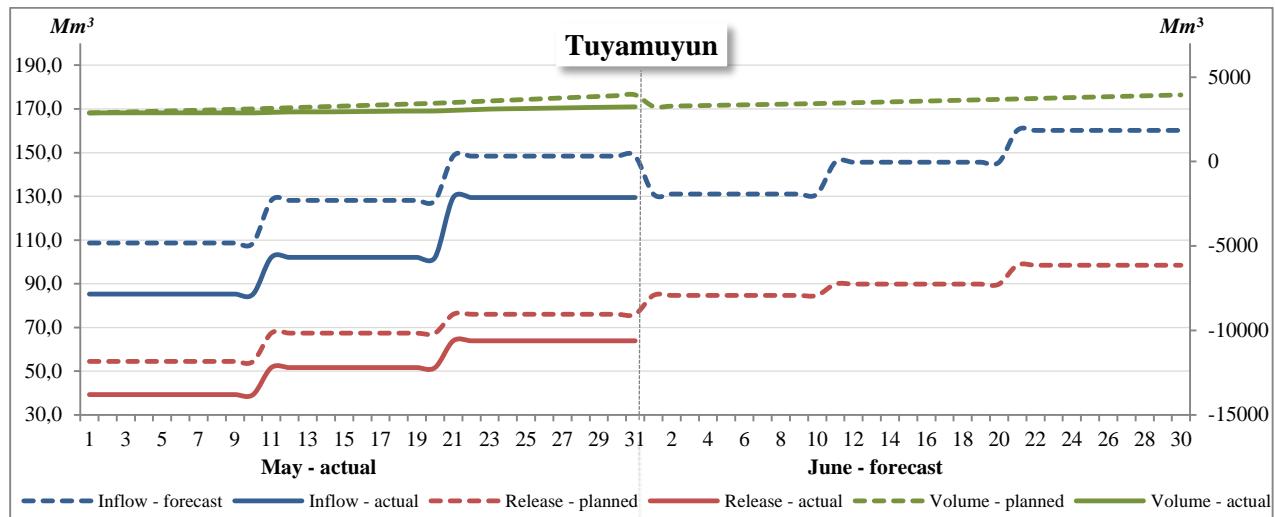
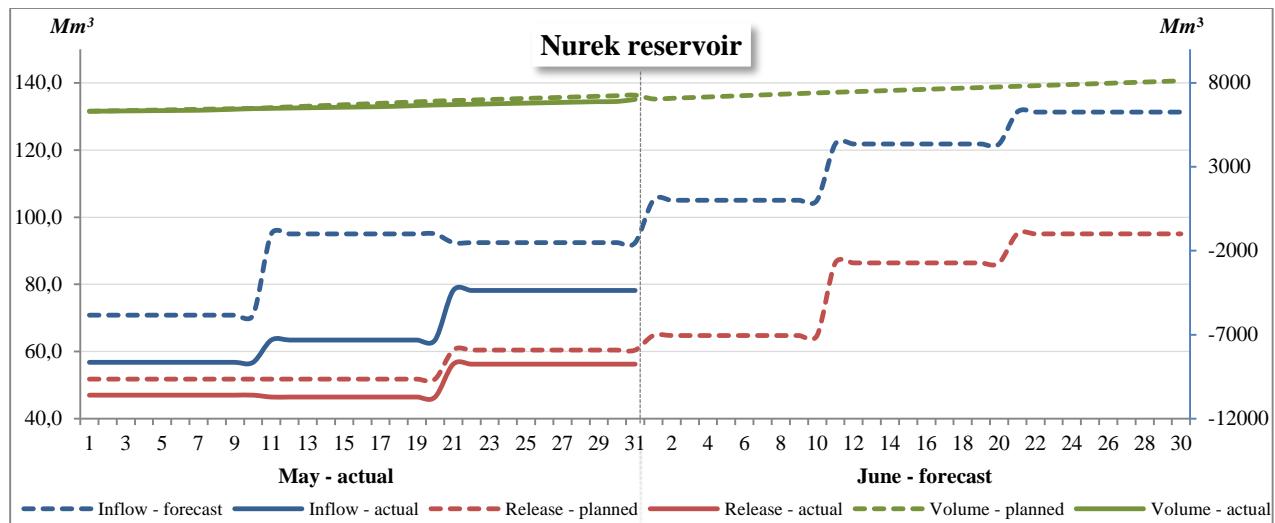


Water resources

Object
Amu Darya
Nurek reservoir
Atamyrat gauging station

Water volume (W)

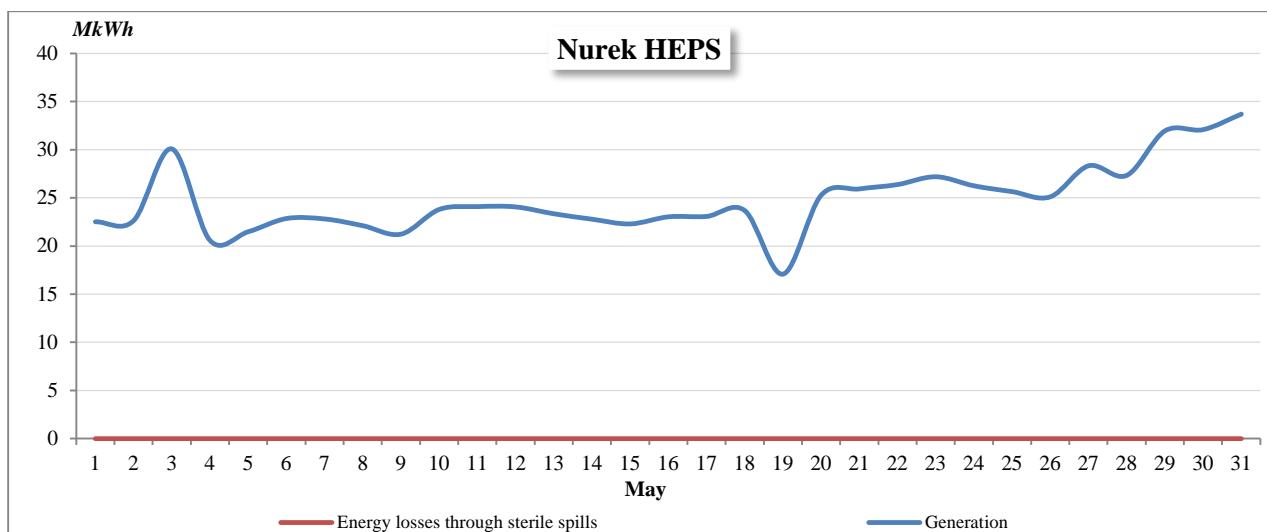
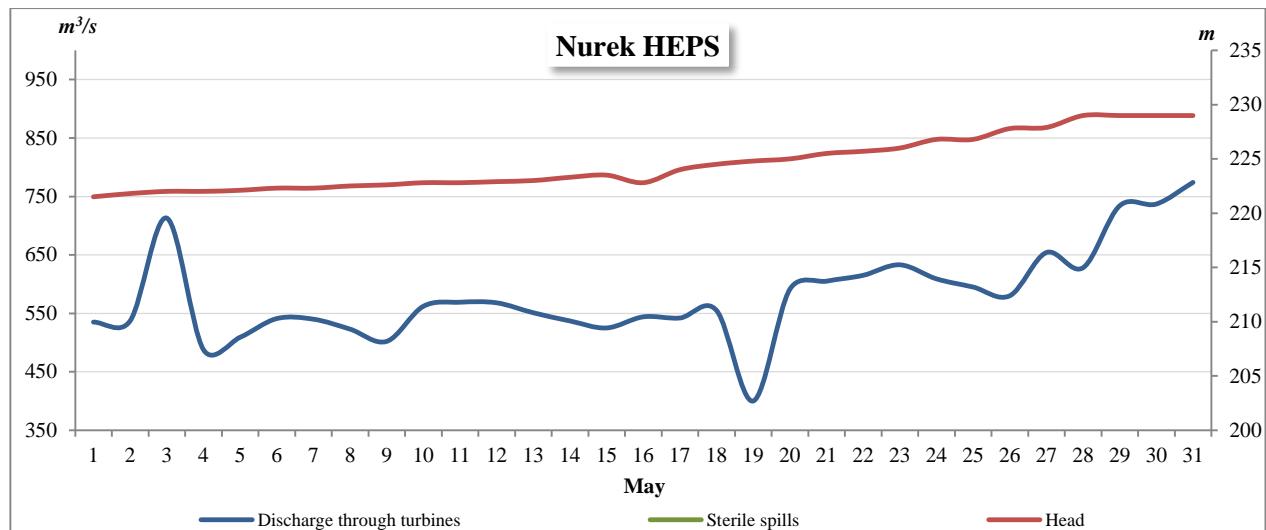
Object	Parameter	May			June		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
River runoff: Atamyrat g/s	W, Mm^3	Forecast	1270	1585	1879.2	1900.8	2160.0
		Actual	1241	1475	1683		
Water withdrawal: upstream of Atamyrat g/s	W, Mm^3	Forecast	1012	1056	1107	1153	1167
		Actual	823	875	881		
Nurek reservoir /filling (+) or draw down (-)	W, Mm^3	Forecast	190	432	320	403	354
		Actual	97	169	219.46		
Natural water resources at Atamyrat g/s	W, Mm^3	Forecast	2471.7	3073.6	3306.4	3457	3682
		Actual	2160.6	2519.4	2784.2		
Lateral inflow: downstream of Atamyrat g/s	W, Mm^3	Forecast	101.1	97.4	74	92	81
		Actual	101.1	97.4	74		
Open channel losses: downstream of Atamyrat g/s	W, Mm^3	Forecast	41.4	130.1	187	396	456
		Actual	303.8	342.5	222		
Available usable water resources	W, Mm^3	Forecast	2531	3041	3193	3153	3307
		Actual	1958	2274	2636		

Reservoirs and HEPS

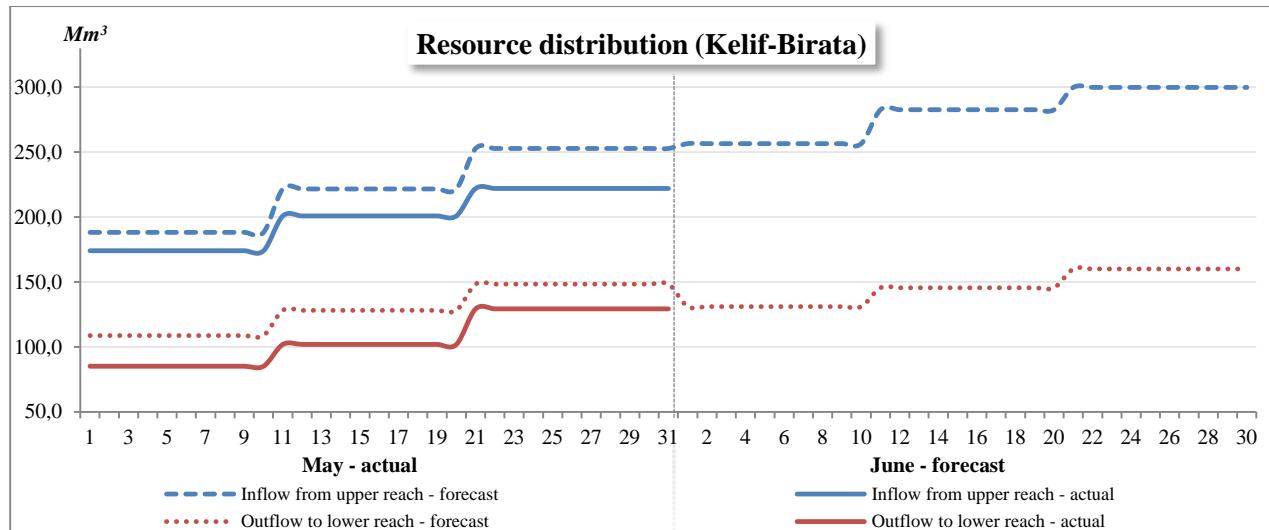
Reservoir	Location			Characteristics				
	Latitude	Longitude	Altitude above sea level, m	Length, km	Width, km	Water-surface area, km²	Full volume, km³	Full reservoir level, m
Nurek	38.40	69.47	864	70	1	98	10.50	910
Tuyamuyun	41.03	61.73	130	55	20	670	6.86	130

Inflow (I), Releases (R), Volume (W)



Reservoir	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Nurek reservoir	I, Mm^3	Forecast	708	950	1017	1050.6	1218.2	1313
		Actual	568.0	634.3	860			
	R, Mm^3	Planned	518	518	665	648.0	864.0	950
		Actual	471	465	619			
	W, Mm^3	Planned	6485.1	6917.1	7268.7	7406.0	7760.2	8123
		Actual	6458	6674	7003.4			
Reservoirs of Tuyamuyun waterworks facility	I, Mm^3	Forecast	1087.0	1281.8	1632.7	1310.9	1456	1602
		Actual	853.2	1020.9	1424			
	R, Mm^3	Planned	544.3	673.9	836.4	846.7	898.6	985
		Actual	392	516	703			
	W, Mm^3	Planned	3117	3449	3941	3430	3677	3939
		Actual	2880	2993	3242.1			

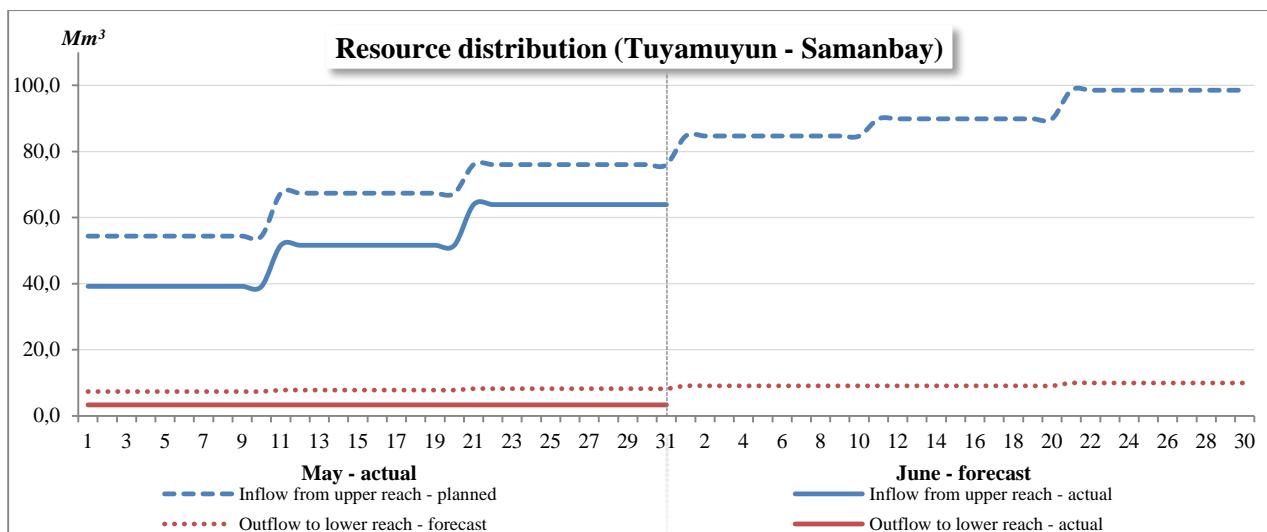
Generation (G), Energy losses through sterile spills (L), Discharge through turbines (Q), Sterile spills (R), Head (H)

HEPS	Parameter	May			
		I ten-day	II ten-day	III ten-day	
Nurek	$G, M kWh$	Actual	230.07	228.69	309.78
	$L, M kWh$	Actual	0.00	0.00	0.00

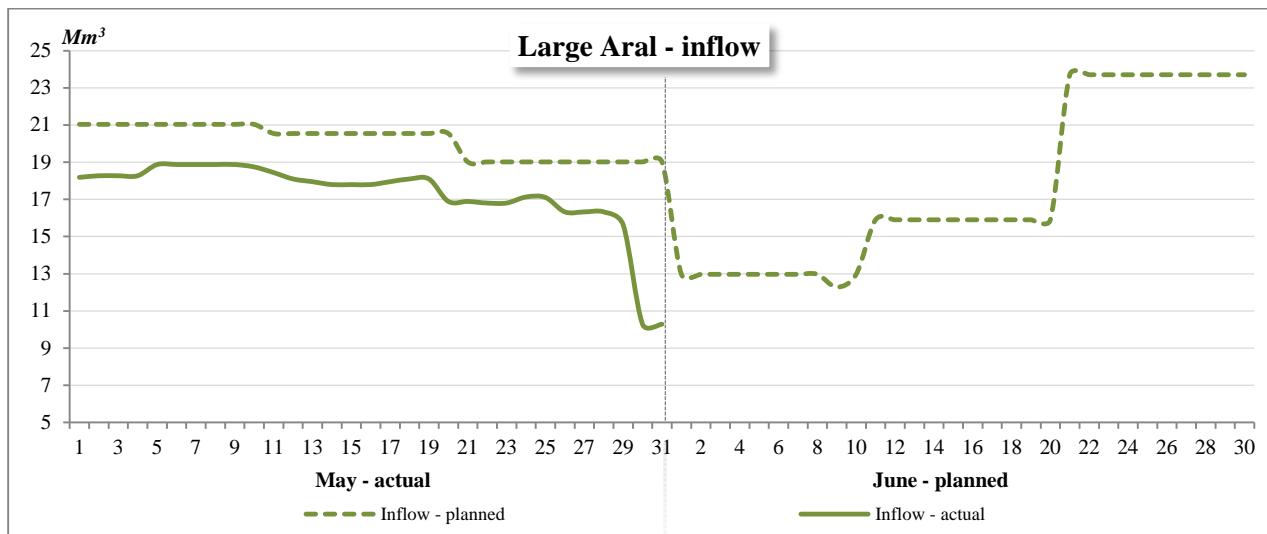

	$Q, m^3/s$	Actual	545.00	538.20	651.27
	$R, m^3/s$	Actual	0.00	0.00	0.00
	H, m	Actual	222.19	223.66	227.50

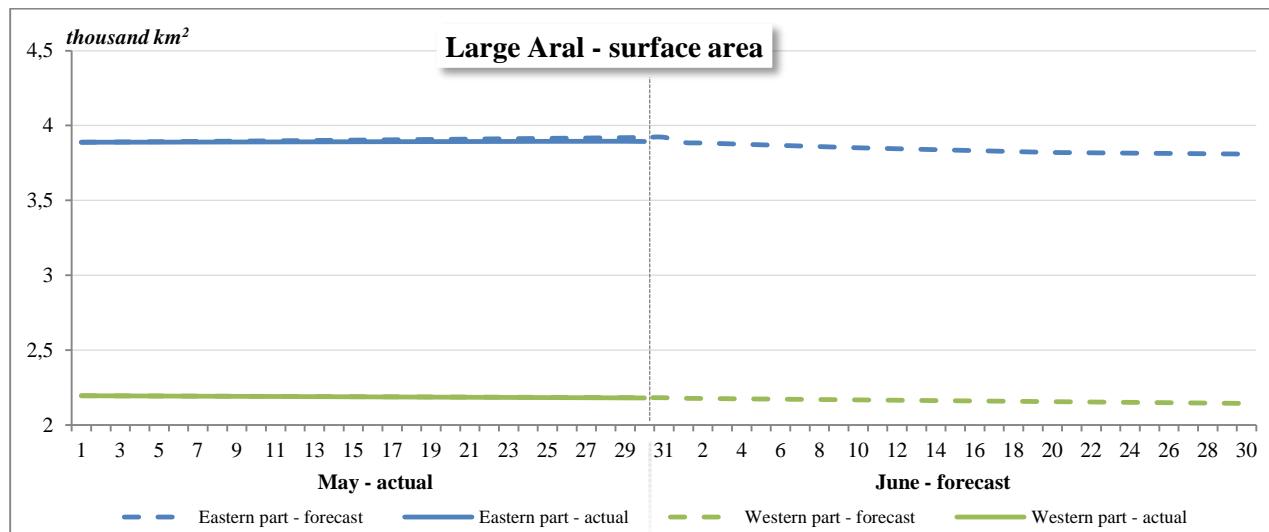
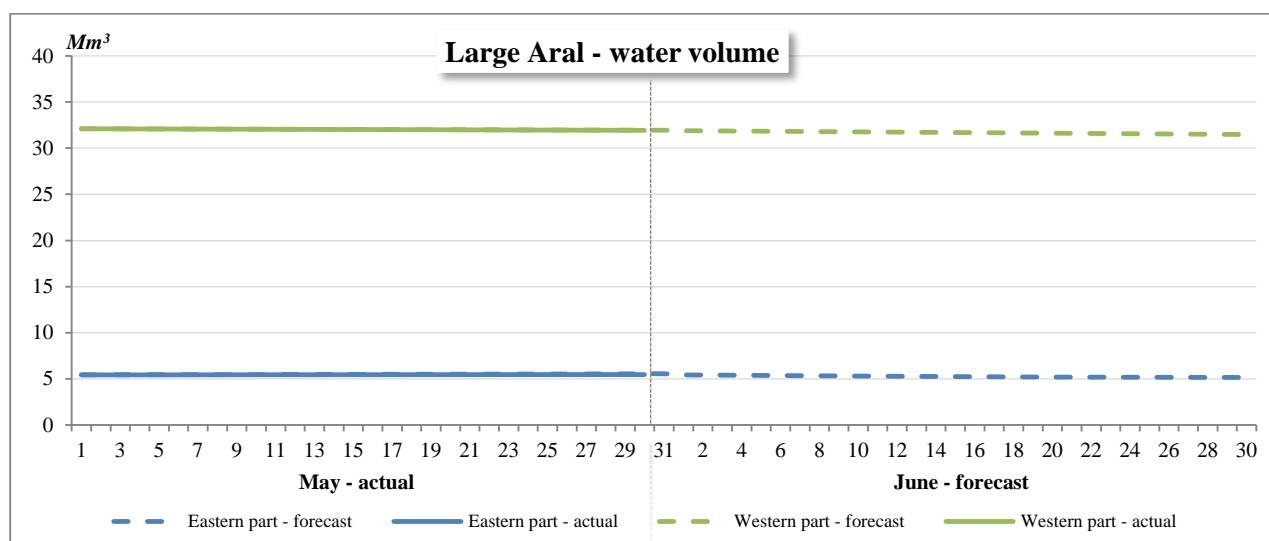
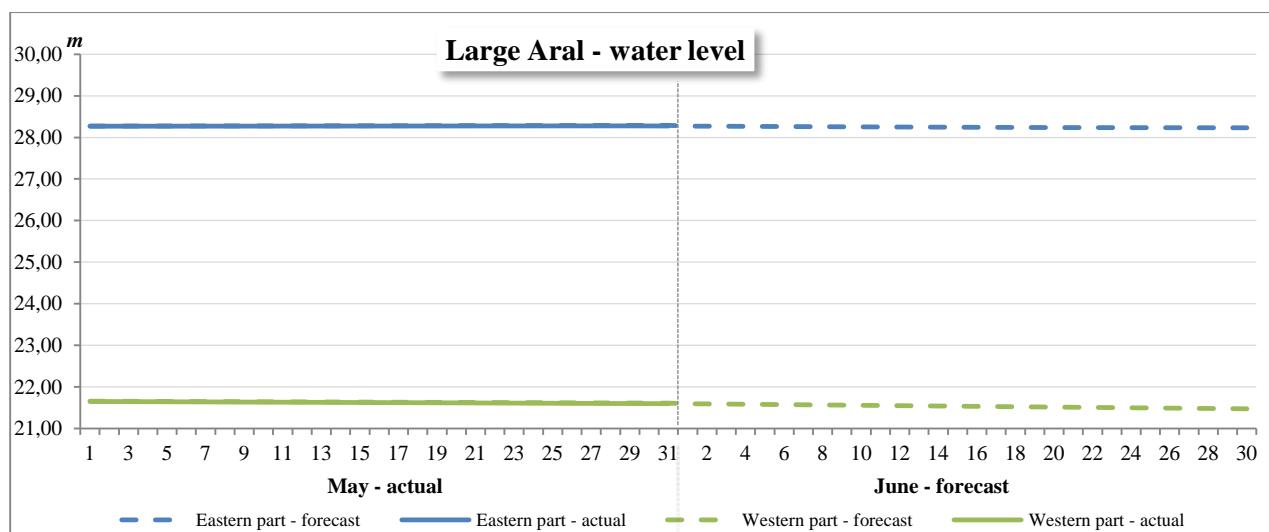
River reaches	
Kelif gauging station (upstream of intake to Garagumdyra)	Birata gauging station (Darganata)
Tuyamuyun gauging station (tail water of Tuyamuyun waterworks facility)	Samanbay settlement
Large Aral Sea	

Water volume (W)


Kelif - Birata	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Forecast	1883	2217	2781	2565	2826	2998
		Actual	1740	2008	2441			
Lateral inflow	W, Mm ³	Forecast	101	97	81	92	81	82
		Actual	101	97	81			
Water withdrawal	W, Mm ³	Planned	855	902	1024	950	995	1013
		Actual	675	742	855			
Losses	W, Mm ³	Forecast	41.4	130.1	206	396	456	465
		Actual	312	343	244			
Outflow to lower reach	W, Mm ³	Forecast	1087.0	1281.8	1633	1310.9	1456	1602
		Actual	853.2	1020.9	1424			

Water volume (W)


Tuyamuyun - Samanbay	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Forecast	544.3	673.9	836	846.7	899	985
		Actual	392.2	516.2	703			
Lateral inflow	W, Mm ³	Forecast	0.0	0.0	0.0	0.0	0.0	0.0
		Actual	0.0	0.0	0.0			
Water withdrawal ¹	W, Mm ³	Planned	363	462	580	587.5	631	691
		Actual	250.2	276	437			
Losses	W, Mm ³	Forecast	108	134	166	168.5	177	194
		Actual	109	207	228			
Outflow to lower reach	W, Mm ³	Forecast	73.44	77.76	90.29	90.7	91	99
		Actual	33.2	33.09	36.88			




¹ Note: Including supply to the system of lakes and environmental water releases into canals

Water volume (W), Level (H), Surface area (S)

Large Aral Sea	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow	W, Mm ³	Planned	210.32	205.41	209.14	129.00	159.00	237.00
		Actual	186.19	178.98	169.96			
Eastern part, water volume	W, Mm ³	Forecast	5.46	5.50	5.54	5.37	5.24	5.16
		Actual	5.44	5.45	5.46			
Eastern part, level	H, m	Forecast	28.27	28.28	28.29	28.26	28.24	28.23
		Actual	28.27	28.27	28.27			
Eastern part, area	S, th.km ²	Forecast	3.89	3.90	3.92	3.87	3.83	3.81
		Actual	3.89	3.89	3.89			
Western part, water volume	W, Mm ³	Forecast	32.10	32.04	31.99	31.85	31.71	31.56
		Actual	32.09	32.03	31.96			
Western part, level	H, m	Forecast	21.65	21.63	21.62	21.58	21.53	21.49
		Actual	21.65	21.63	21.61			
Western part, area	S, th.km ²	Forecast	2.19	2.19	2.18	2.17	2.16	2.15
		Actual	2.19	2.19	2.18			

Syr Darya River Basin

Actual Situation in May and Forecast for June

In May, the available usable water resources in the Syr Darya that were estimated as the sum of river flows based on inflow to Toktogul, Andizhan, and Charvak reservoirs plus lateral inflow to the rivers and minus losses amounted to 4,503 million m³, of which the inflow to the three upper reservoirs was 2,480 million m³ (80% of the forecast).

In June, the available usable water resources are expected in the amount of 5,521 Mm³, including 4,291 Mm³ of inflow to three upper reservoirs or 173% of the flow in May.

In May, inflow to the Toktogul reservoir was 1,117 million m³ or 77% of the expected volume, and water releases from the reservoir amounted to 734 million m³ or 73% of BWO Syr Darya's schedule. The water volume in the Toktogul reservoir increased from 11,672 million m³ at the beginning of month to 12,617 million m³ by the end of month. The reservoir's water balance showed a positive discrepancy of 558 Mm³ (!), indicating to unrecorded inflow to the reservoir or (and) to inaccurate flow accounting at entrance to the reservoir (underestimation) and at outlet (overestimation). Excessive water releases from the reservoir of Toktogul waterworks facility (if any) may be one of factors contributing to increased negative flow discrepancy in the reach of Toktogul waterworks facility – Uchkurgan waterworks facility (tail-water) showing to both unrecorded losses or diversions in this reach and inaccurate flow measurements. It is expected that in June the Toktogul reservoir will accumulate water and by the end of month the water volume will be 26,536 million m³; the inflow to the reservoir is expected in the amount of 2,258 million m³, and water releases are planned at 999 million m³.

In May, inflow to the Andizhan reservoir was 294 million m³ (only 58% of the forecast); thus, this confirms the expected lower water content of the Karadarya River as compared to that of the Naryn River during the growing season. Water releases from the Andizhan reservoir were 308 million m³. The reservoir's water volume decreased to 762 million m³ by the end of month. Water losses were estimated by balance discrepancy at 5 Mm³. In June, inflow to the Andizhan reservoir is expected to increase to 639 million m³ and water releases will increase to 415 million m³. The reservoir will accumulate water to 1,755 million m³.

Inflow to the Bakhri Tojik reservoir was 926 million m³ (71% of the forecast), while water releases from the reservoir were in the amount of 949 million m³ (73% of the plan) in May. The water volume in the reservoir did not change – 3,516 Mm³. The unrecorded inflow to the reservoir was detected from the balance method in the amount of 23 Mm³. In June, inflow to the Bakhri Tojik reservoir is expected to decrease to 777 million m³, and 1,170 million m³ are to be discharged from the reservoir. Consequently, the reservoir will be emptied to 3,123 million m³.

In May, the Charvak reservoir was filled with water from 754 million m³ to 1,367 million m³. Inflow to the reservoir was 1,069 million m³ (93% of forecast), and water releases amounted to 408 million m³ (64% of the plan). Thus, the reservoir accumulated water through water releases that were below the scheduled values. The balance discrepancy was 49 million m³. This can be attributed to water losses and inaccurate estimation of inflow to the reservoir. In June, the Charvak reservoir will accumulate water and its volume will increase to 3,378 Mm³ by the end of month. Inflow to the reservoir is expected in the amount of 1,394 Mm³, while 773 Mm³ of water will be released.

Inflow to the Shardara reservoir was only 947 million m³ (42% of the forecast) in May. Water releases from the reservoir amounted to 882 million m³ (60% of BWO Syr Darya's schedule). The reservoir was emptied from 4,857 Mm³ to 4,662 Mm³. Water was not discharged into Arnasai. Balance discrepancy (showing flow uses) amounted to 198 Mm³ (about 4% of the water volume in the reservoir). In June, inflow to the Shardara reservoir is expected to decrease

further - 793 million m³, while planned water releases will be 1,296 million m³. The reservoir's water volume will decrease to 4,040 million m³ by the end of month. Water discharge into Arnasai is not planned for June.

In May, the Koksarai reservoir did not accumulate water. Water discharge from the reservoir into the Syr Darya River was estimated at 886 Mm³. The water volume increased from 1,656 million m³ to 1696 million m³. In June, it is planned to discharge water from the reservoir in the amount of 575 million m³. The reservoir will be drawn down to 121 million m³. In July, the reservoir will be fully emptied.

In May, energy generation by the cascade of Naryn HEPS amounted to 733 million kWh (under energy-generation regime) against planned 877 million kWh, including: Toktogul HEPS - 257 million kWh. The average discharge through turbines of Toktogul HEPS was 269 m³/s, while the average head was 142 m. No sterile spills were observed. The plan of energy generation for June for the cascade of Naryn HEPS is set at 900 million kWh, including 360 million kWh for Toktogul HEPS.

In May, the total generation at large HEPS of Uzbekistan amounted to 155 million kWh, of which: 86 million kWh at Charvak HEPS, 22 million kWh at Farkhad HEPS, and 47 million kWh at Andizhan HEPS. The discharge at Charvak HEPS was 112 m³/s, and the head was 120 m. The discharge at Farkhad HEPS was 134 m³/s, and the head was 31 m. The discharge at Andizhan HEPS was 88 m³/s, and the head was 95 m.

Energy generation by HEPS of the Bakhri Tojik reservoir amounted to 33 million kWh (by 9 million kWh less than in April), and that by Shardara HEPS was 53 million kWh in May. Water discharge at HEPS of Bakhri Tojik was 310 m³/s, while the head was 20 m. Discharge at Shardara HEPS was 300 m³/s, and the head was 21 m (dropped by 10 m as compared to April).

In May, water was distributed unevenly along the Naryn River and the Syr Darya River. In the reach of Toktogul HEPS – Uchkurgan waterworks facility (tail-water) the water shortage amounted to 11 million m³ or less than 2% of planned water withdrawal. The balance discrepancy that can be attributed to open channel losses was 173 million m³ (24% of river flow at the head of the reach).

In the reach of the Syr Darya River from Uchkurgan waterworks facility (tail-water) to Akjar g/s (inflow to the Bakhri Tojik reservoir) the water shortage was 12 million m³ (19% of the plan), and open channel losses were estimated at 27 Mm³ (10% of water releases from Uchkurgan waterworks facility).

In the reach of Bakhri Tojik reservoir – Shardara reservoir the water shortage amounted to 579 million m³ (57%), and the balance discrepancy (open channel losses) was 109 million m³ (13% of water releases from Bakhri Tojik).

In the lower reaches (downstream of Shardara reservoir) the balance discrepancy (open channel losses and unrecorded water withdrawal) was detected in the amount of 434 million m³ or 49% of the Syr Darya River flow in the tail-water of Shardara reservoir.

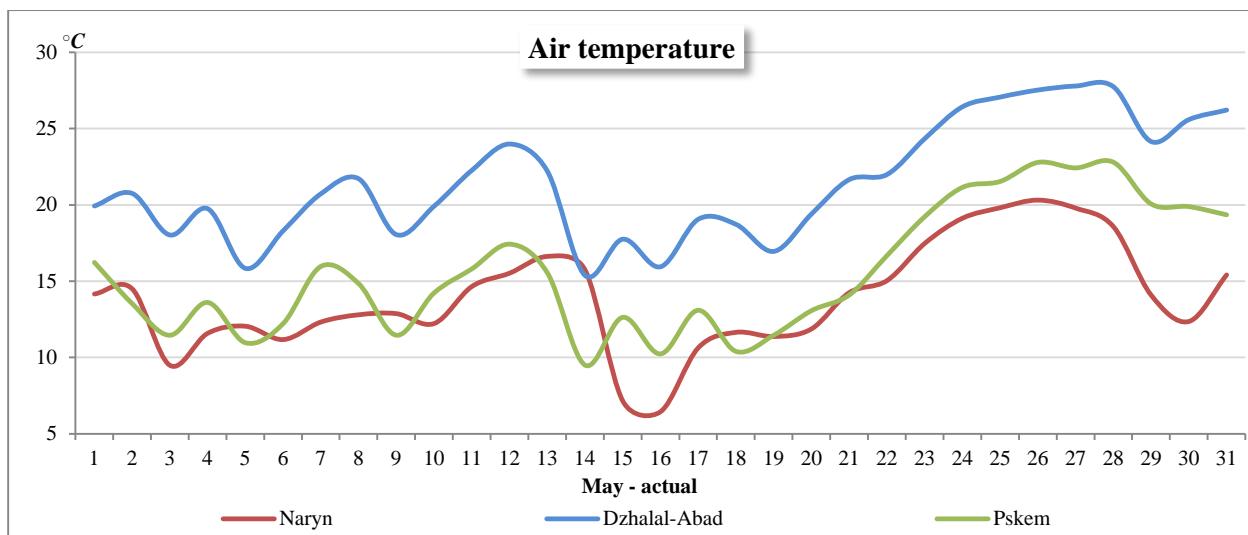
In May, the flow along the Naryn – Syr Darya rivers changed as follows: discharge from the Toktogul reservoir – 734 million m³, discharge from Uchkurgan waterworks facility – 278 million m³ (38% of water releases from the Toktogul reservoir), Akjar g/s (inflow to the Bakhri Tojik reservoir) – 837 million m³, inflow to the Shardara reservoir – 947 million m³, Syr Darya – tail-water of the Shardara reservoir – 882 million m³, and inflow to the Northern Aral Sea - 112 million m³.

In June, water withdrawal from the river will be increased: from 618 million m³ to 878 million m³ in the reach Toktogul HEPS – Uchkurgan waterworks facility, to 1,587 million m³ in the reach Uchkurgan waterworks facility – Shardara reservoir; and in the lower reaches (Shardara-Aral) it is planned to decrease water withdrawal to 1,185 million m³. Inflow to the Northern Aral Sea is expected in the amount of 23 million m³ only.

In May, inflow to the Northern Aral Sea was 112 million m³. The water level in the sea varied within 42.2...24.16 m. The water surface area was 3.19...3.18 thousand km² and the water volume was 24.2...23.6 km³. The discharge from the Northern Aral Sea into the Large Aral Sea (Amu Darya Basin) was recorded in the amount of 213 million m³.

It is expected that in June inflow to the Northern Aral Sea will decrease substantially and will be 23 million m³ only, and discharge into the Large Aral Sea will be 30 million m³. The water level will be 42.1 m, the water surface area will be 3.17 thousand km², and the water volume will drop to 23.1 km³ by the end of June.

The sections below show daily and ten-day data on climate and water management (reservoirs, HEPS, water distribution).

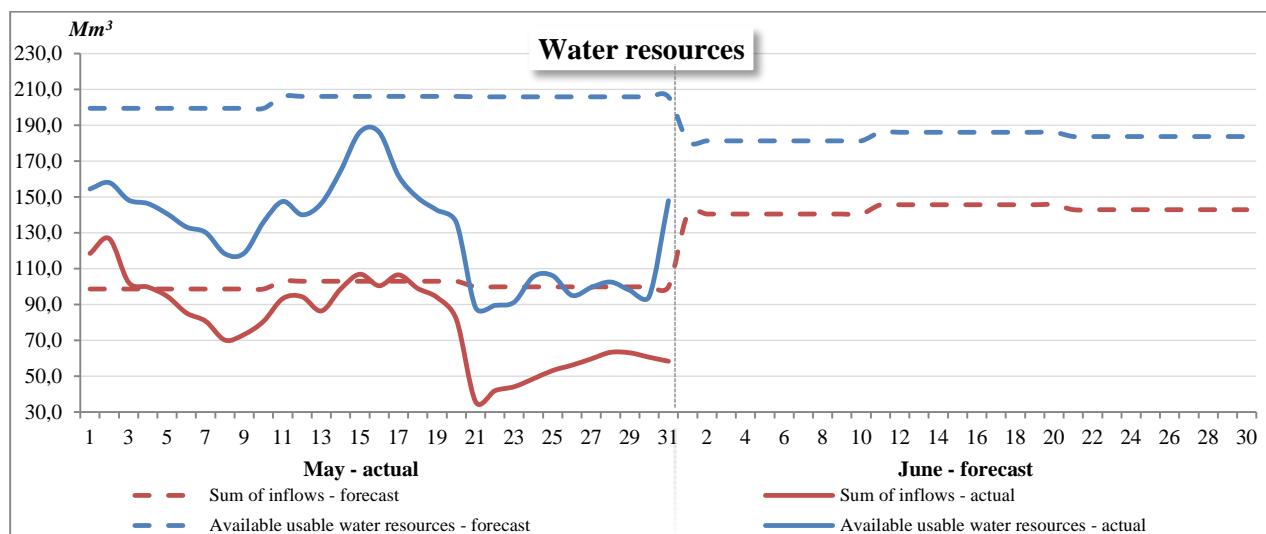


Climate

Weather station Riverhead	Location		
	Latitude	Longitude	Altitude above sea level, m
Naryn	41.43	76.00	2041
Dzhalal-Abad	40.92	72.95	765
Pskem	41.90	70.37	1258

Air temperature (T)

Station	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Naryn	T. °C	Forecast	13.00	13.00	16.00	18.00	21.00	22.00
		Actual	12.32	12.17	16.93			
Dzhalal-Abad	T. °C	Forecast	19.00	19.00	25.00	26.00	28.00	32.00
		Actual	19.30	19.17	25.50			
Pskem	T. °C	Forecast	13.00	13.00	20.00	22.00	24.00	27.00
		Actual	13.44	12.91	20.00			

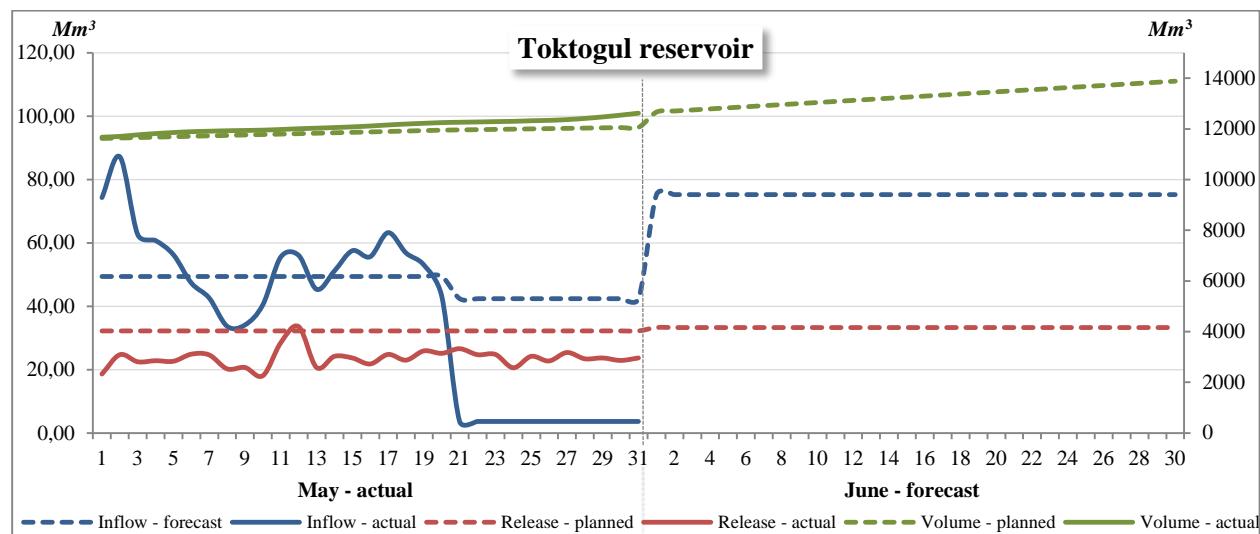


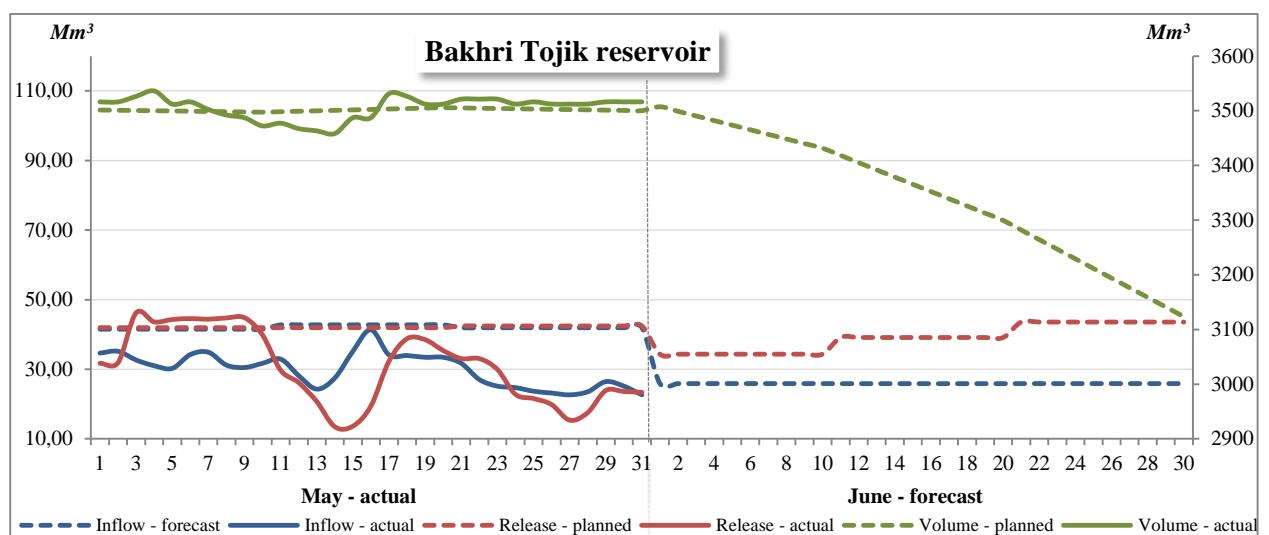
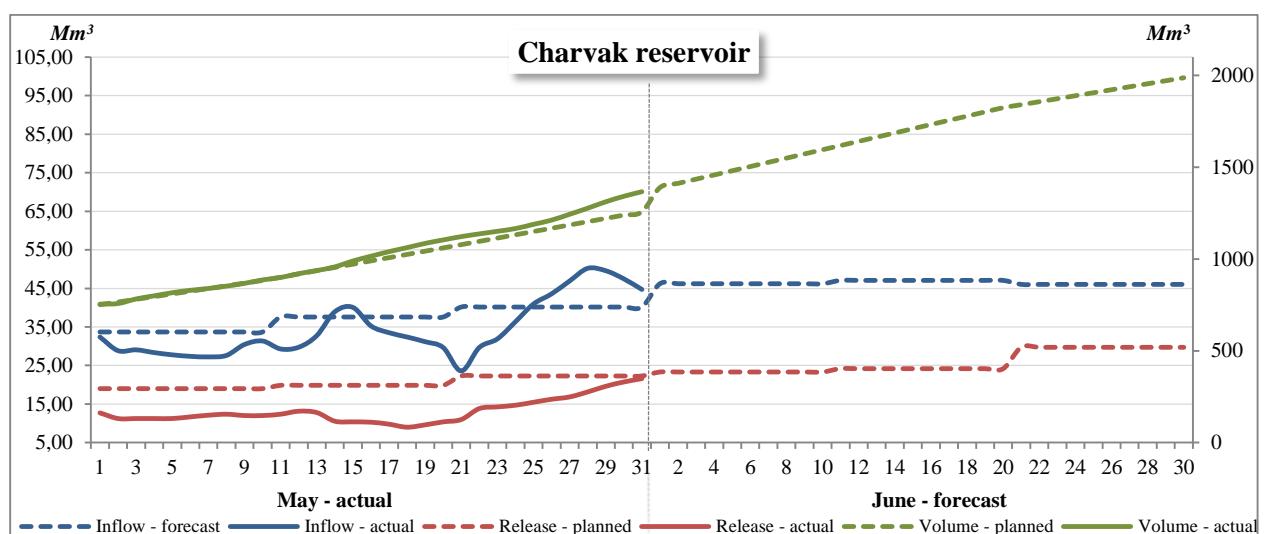
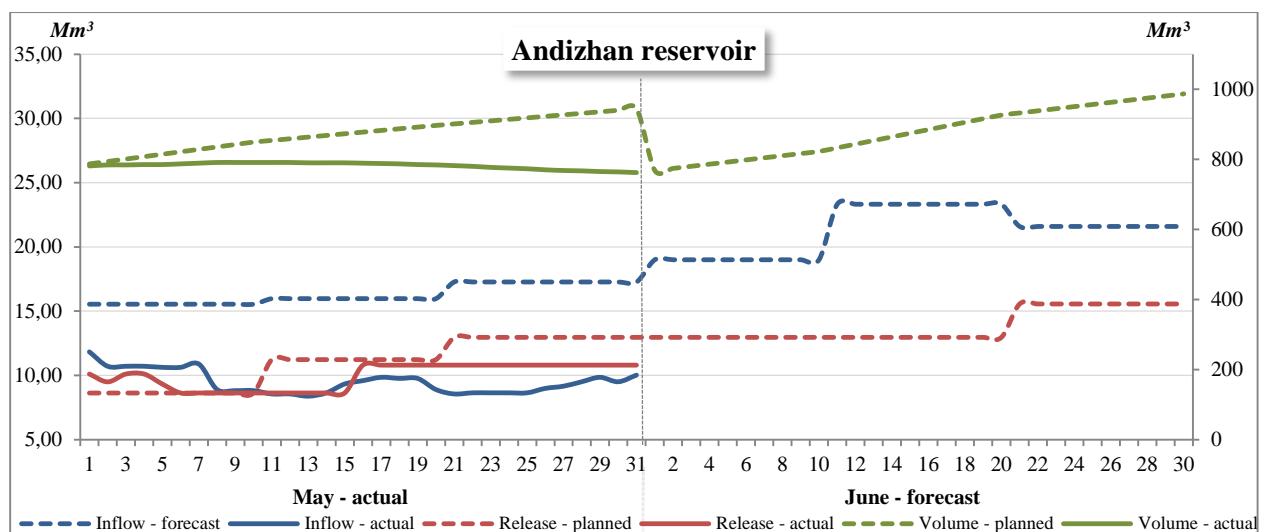
Water resources

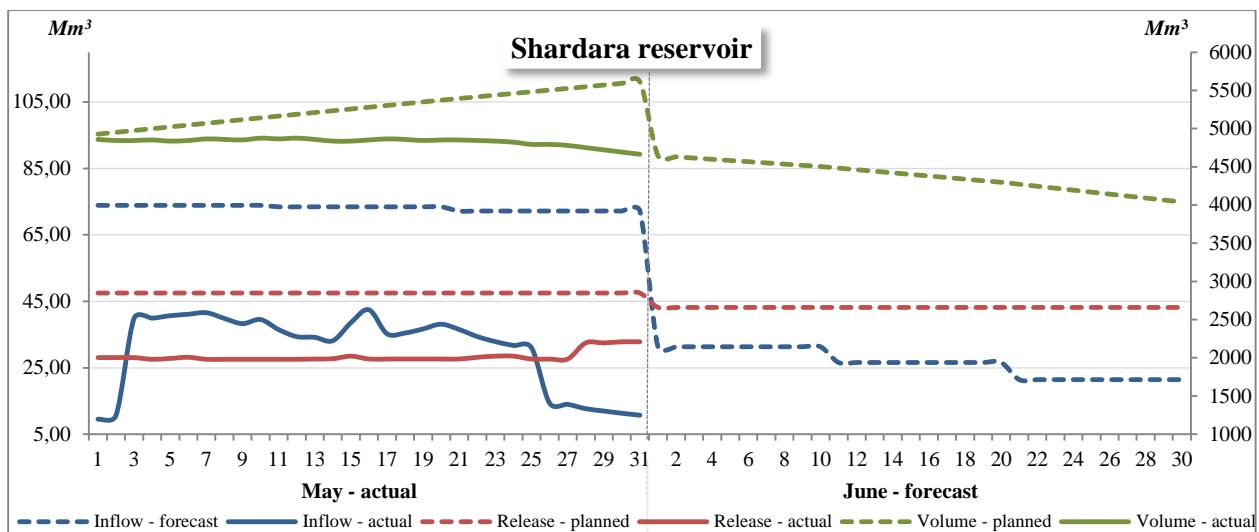
Object
Naryn River (inflow to Toktogul)
Karadarya River (inflow to Andizhan)
Chirchik River (inflow to Charvak)
Syr Darya River (up to Shardara)

Water volume (W)

Object	Parameter	May			June		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow to Toktogul reservoir	W, Mm ³	Forecast	494	494	466.6	753	753
		Actual	539	538	40.3		
Inflow to Andizhan reservoir	W, Mm ³	Forecast	156	160	190.1	190	233
		Actual	103	91	100.1		
Inflow to Charvak reservoir	W, Mm ³	Forecast	337	376	441.9	462	471
		Actual	291	333	445.1		
Sum of inflows to reservoirs	W, Mm ³	Forecast	987	1030	1098.6	1405	1457
		Actual	933	962	585.5		
Lateral inflow up to Shardara	W, Mm ³	Forecast	1056	1079	1223.9	482	478
		Actual	500	648	1028.7		
Losses	W, Mm ³	Forecast	48	48	58.0	74	74
		Actual	48	48	58.0		
Available usable water resources	W, Mm ³	Forecast	1995	2061	2264.5	1813	1861
		Actual	1385	1561	1119		

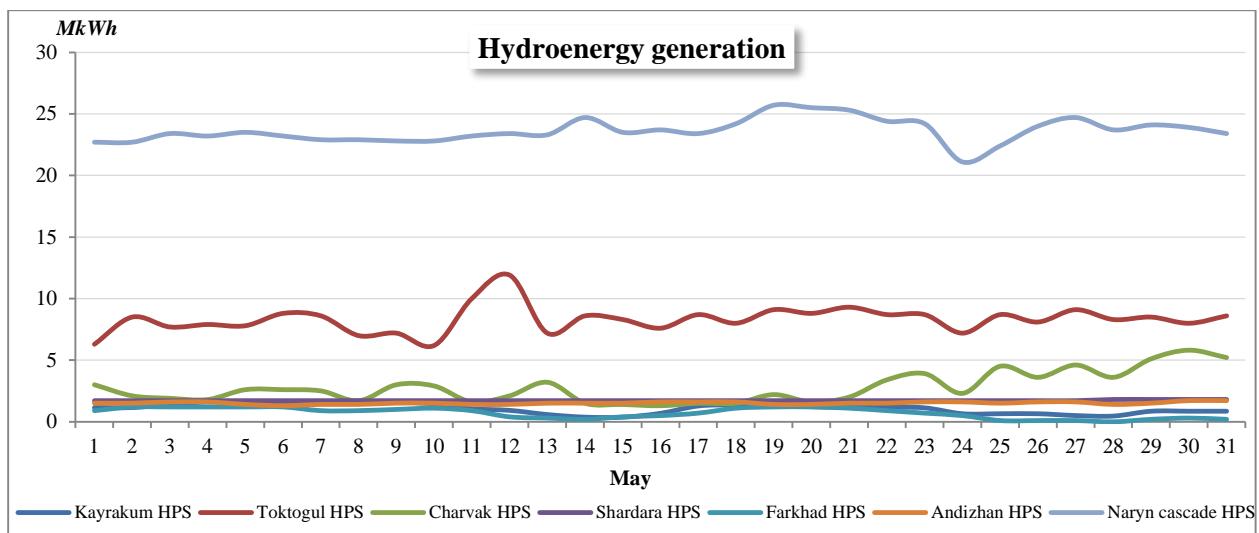


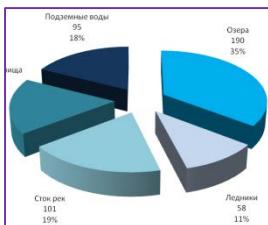



Reservoirs and HEPS


Reservoir	Location			Characteristics			
	Latitude	Longitude	Altitude above sea level, m	Length, km	Width, km	Water-surface area, km ²	Full volume, km ³
Toktogul	41.80	72.87	880	65	12	284	19.50
Andizhan	40.77	73.11	900	36	1.5-12	56	0.19
Bakhri Tojik	40.29	70.07	344	75	20	520	4.16
Charvak	41.63	70.03	869	15	3	37	1.90
Shardara	41.20	67.99	250	80	25	783	5.70

Inflow (I), Releases (R), Volume (W)

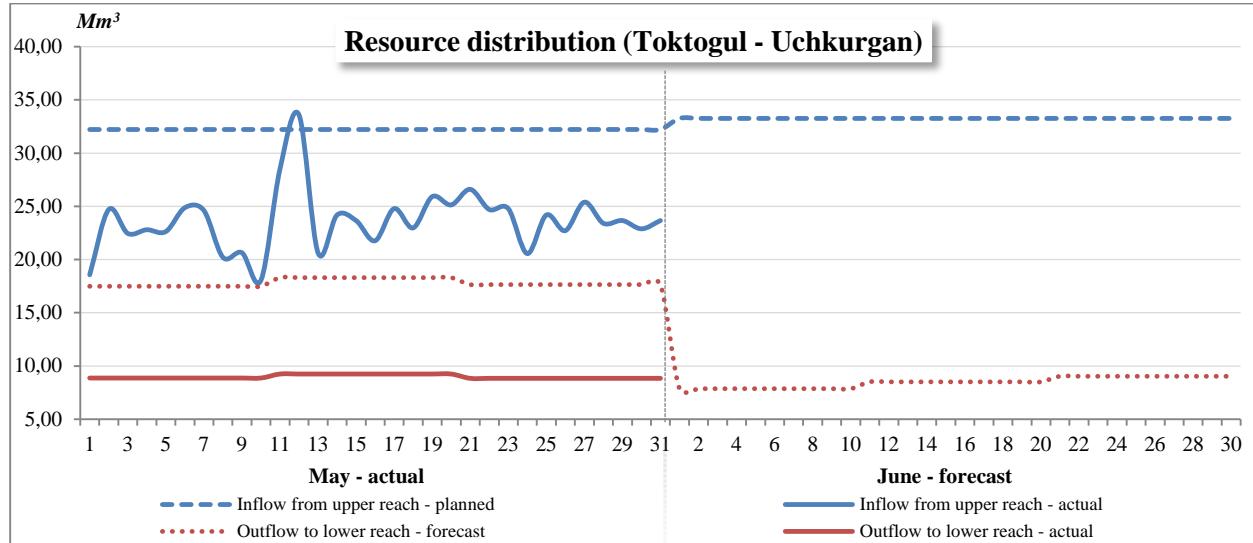
Reservoir	Parameter	May			June		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Toktogul reservoir	I, Mm^3	Forecast	494.21	494.21	466.62	752.54	752.54
		Actual	539.40	537.67	40.32		
	R, Mm^3	Planned	322.27	322.27	354.53	332.64	332.64
		Actual	219.63	251.25	262.66		
	W, Mm^3	Planned	11776	11948	12060	13037	13457
		Actual	11952	12247	12617		
Andizhan reservoir	I, Mm^3	Forecast	155.52	159.84	190.08	190.08	233.28
		Actual	102.64	91.32	100.14		
	R, Mm^3	Planned	86.40	112.32	142.56	129.60	129.60
		Actual	92.36	97.20	118.80		
	W, Mm^3	Planned	849	897	944	822	926
		Actual	791	784	762		
Charvak reservoir	I, Mm^3	Forecast	336.96	375.84	441.87	462.24	470.88
		Actual	290.54	332.89	445.09		
	R, Mm^3	Planned	190.08	198.72	245.19	233.28	241.92
		Actual	117.76	108.17	182.39		
	W, Mm^3	Planned	884	1061	1258	1596	1825
		Actual	886	1104	1367		
Bakhri Tojik reservoir	I, Mm^3	Forecast	415.00	427.51	461.10	259.21	259.01
		Actual	326.25	324.35	275.79		
	R, Mm^3	Planned	419.33	419.30	466.62	343.53	391.20
		Actual	416.35	268.39	264.30		
	W, Mm^3	Planned	3498	3506	3500	3432	3299
		Actual	3472	3512	3516		
Shardara reservoir	I, Mm^3	Forecast	738.91	734.47	794.04	313.20	265.79
		Actual	340.98	364.63	241.75		
	R, Mm^3	Planned	475.20	475.20	522.72	432.00	432.00
		Actual	278.04	277.26	326.42		
	W, Mm^3	Planned	5140	5372	5613	4503	4298
		Actual	4874	4850	4662		





Generation (G), Energy losses through sterile spills (L), Discharge through turbines (Q), Sterile spills (R), Head (H)

HEPS	Parameter	May			
		I ten-day	II ten-day	III ten-day	
Naryn cascade	$G, M kWh$	Actual	230.10	240.60	261.20
	$G, M kWh$	Actual	76.00	88.20	93.20
Toktogul	$Q, m^3/s$	Actual	249.00	286.40	272.18
	H, m	Actual	145.90	147.10	148.30
Andizhan	$G, M kWh$	Actual	14.70	14.90	17.20
	$Q, m^3/s$	Actual	82.90	87.30	92.27
	H, m	Actual	95.00	95.00	95.00
Bakhri Tojik	$G, M kWh$	Actual	14.77	9.21	8.92
	$Q, m^3/s$	Actual	432.40	269.80	237.45
	H, m	Actual	20.10	20.10	20.10
Farkhad	$G, M kWh$	Actual	10.80	6.90	4.20
	$Q, m^3/s$	Actual	202.60	126.40	77.63
	H, m	Actual	30.60	30.60	30.60
Charvak	$G, M kWh$	Actual	24.10	17.90	44.00
	$Q, m^3/s$	Actual	105.70	73.30	151.54
	H, m	Actual	112.50	119.61	126.80
Shardara	$G, M kWh$	Actual	17.00	17.00	19.10
	$Q, m^3/s$	Actual	300.00	300.00	300.00
	$G, M kWh$	Actual	20.90	20.90	20.90

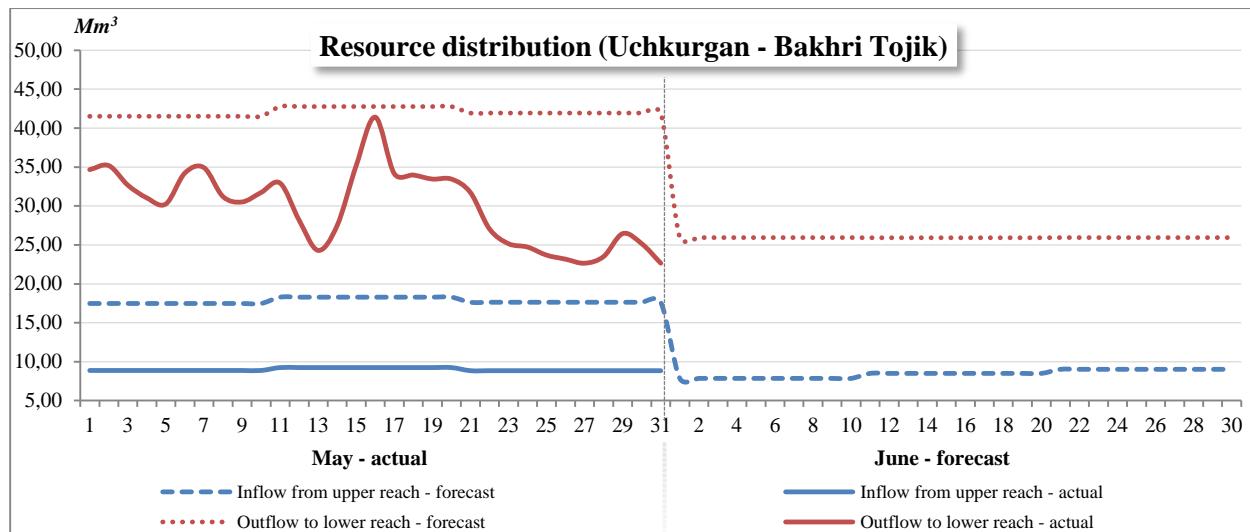

Water distribution

River reach

- Naryn River: tail water of Toktogul reservoir– Uchkurgan waterworks facility
- Naryn River: Uchkurgan waterworks facility - Syr Darya River: inflow to Bakhri Tojik reservoir
- Syr Darya River: tail water of Bakhri Tojik reservoir – inflow to Shardara reservoir
- Syr Darya River: tail water of Shardara reservoir – inflow to Northern Aral Sea (Karateren settlement)
- Northern Aral Sea

Water volume (W)

Toktogul - Uchkurgan	Parameter	May			June		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper reach	W, Mm ³	Planned	322.27	322.27	354.53	332.64	332.64
		Actual	219.63	251.25	262.66		
Lateral inflow ²	W, Mm ³	Forecast	97.68	97.68	107.45	87.70	87.70
		Actual	127.27	93.66	114.57		
Water withdrawals	W, Mm ³	Planned	206.15	198.03	225.05	298.57	292.14
		Actual	203.52	194.05	220.66		
Losses	W, Mm ³	Forecast	38.88	38.88	42.77	43.20	43.20
		Actual	54.73	58.41	59.37		
Outflow to lower reach ³	W, Mm ³	Forecast	174.92	183.04	194.16	78.57	85.00
		Actual	88.65	92.45	97.20		

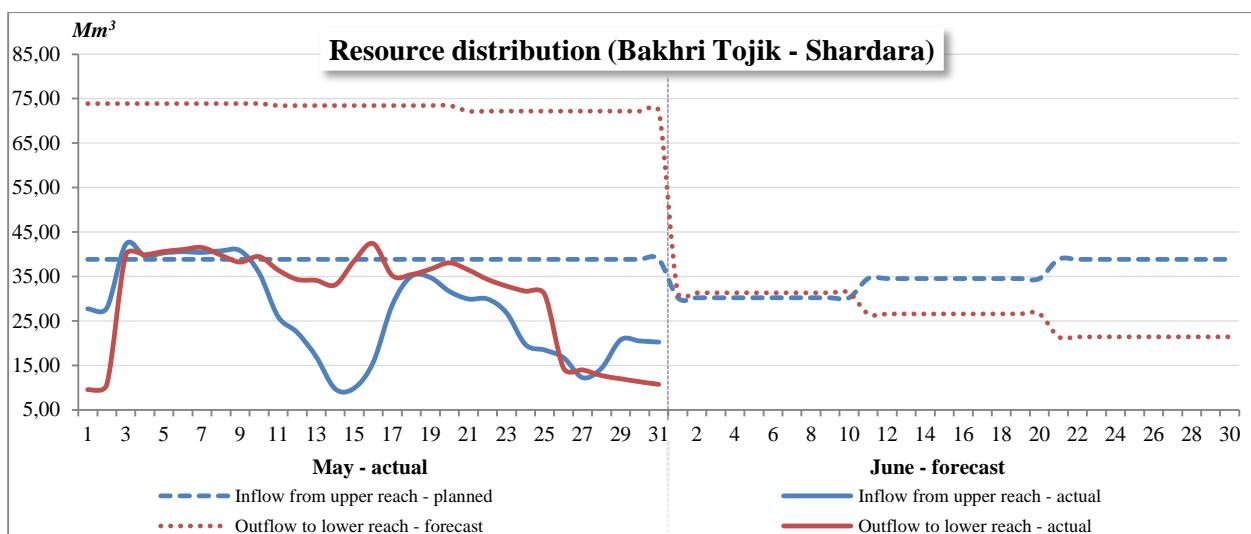


² Incl. Karasu left and right

³ Uchkurgan waterworks facility

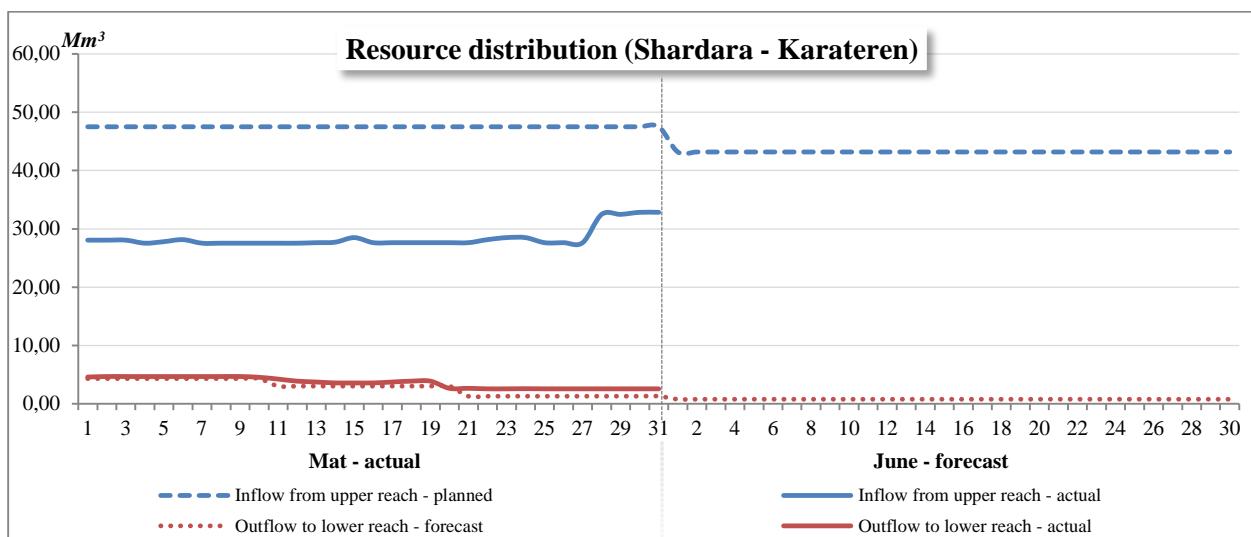
Water volume (W)

Uchkurgan – Bakhri Tojik	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Forecast	174.92	183.04	194.16	78.57	85.00	90.24
		Actual	88.65	92.45	97.20			
Lateral inflow	W, Mm ³	Forecast	290.10	294.51	322.27	206.04	202.02	198.68
		Actual	265.16	261.36	222.57			
Water withdrawals	W, Mm ³	Planned	20.02	20.04	22.33	25.40	28.01	29.71
		Actual	23.81	24.58	25.25			
Losses	W, Mm ³	Forecast	30.00	30.00	33.00	0.00	0.00	0.00
		Actual	3.75	4.88	18.74			
Outflow to lower reach ⁴	W, Mm ³	Forecast	415.00	427.51	461.10	259.21	259.01	259.21
		Actual	326.25	324.35	275.79			

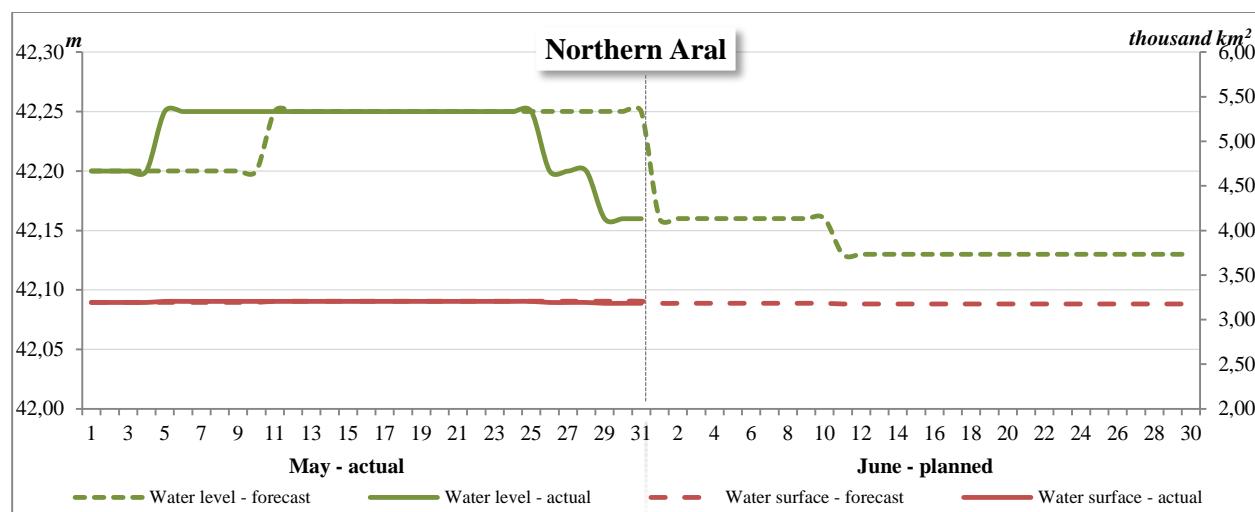
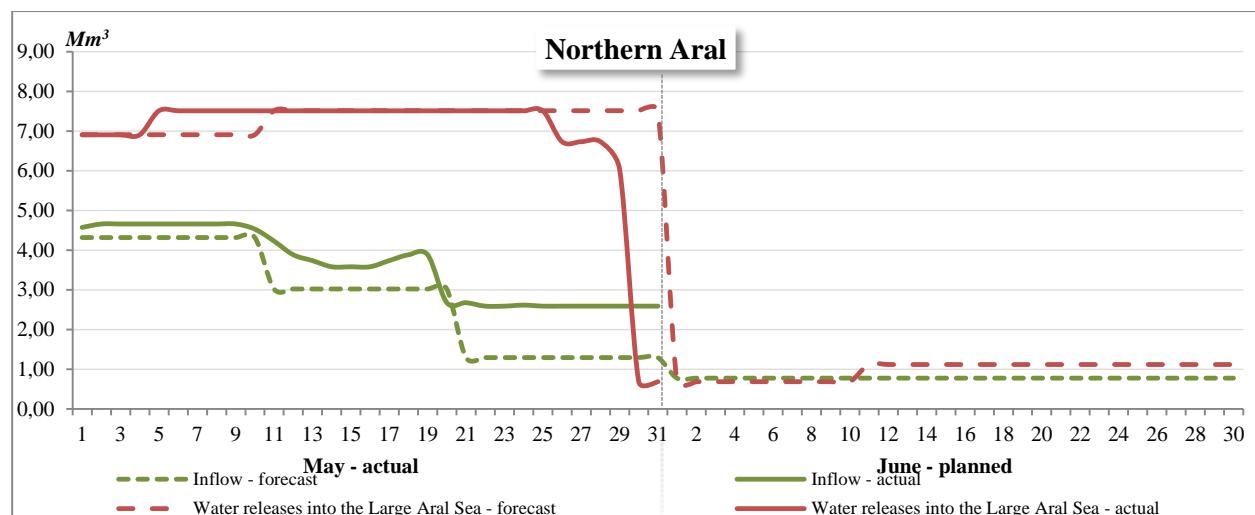


Water volume (W)

Bakhri Tojik - Shardara	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach ⁵	W, Mm ³	Planned	388.80	388.80	427.68	302.40	345.60	388.80
		Actual	376.32	230.95	229.91			
Lateral inflow	W, Mm ³	Forecast	713.41	720.64	826.71	528.59	486.88	407.64
		Actual	180.01	317.53	155.76			
Water withdrawals	W, Mm ³	Planned	303.30	314.97	394.35	457.79	506.69	522.24
		Actual	101.11	143.88	188.32			
Losses	W, Mm ³	Forecast	60.00	60.00	66.00	60.00	60.00	60.00
		Actual	114.25	39.97	-44.40			
Outflow to lower reach	W, Mm ³	Forecast	738.91	734.47	794.04	313.20	265.79	214.20
		Actual	340.98	364.63	241.75			


⁴ Akdzhар g/s

⁵ Kyzylkishlak g/s



Water volume (W)

Shardara - Karateren	Parameter	May			June			
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper reach	W, Mm ³	Planned	475.20	475.20	522.7	432.00	432.00	432.0
		Actual	278.0	277.3	326.4			
Lateral inflow	W, Mm ³	Forecast	0.43	0.43	0	15.0	15.0	15.0
		Actual	12.92	25.26	15.72			
Filling (+), draw down (-) of Koksarai reservoir	W, Mm ³	Planned	259	302.40	333	302.4	229.0	43.2
		Actual	259	293.76	333			
Water withdrawals	W, Mm ³	Planned	347.3	457.1	539.8	414.7	387.9	382.8
		Actual	324.8	424.4	526			
Losses	W, Mm ³	Forecast	344.3	290.7	301.8	326.9	280.2	99.7
		Actual	178.9	135.0	120.1			
Outflow to lower reach	W, Mm ³	Forecast	43.2	30.2	14.3	7.8	7.8	7.8
		Actual	46.4	36.8	28.62			

Water volume (W), Level (H), Surface area (S)

Northern Aral	Parameter	May			June		
		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow	W, Mm^3	Forecast	43.20	30.24	14.26	7.78	7.78
		Actual	46.44	36.82	28.62		
Water volume	W, Mm^3	Forecast	24.19	22.04	24.24	23.51	23.32
		Actual	24.12	23.97	23.73		
Water level	H, m	Forecast	42.20	42.25	42.25	42.16	42.13
		Actual	42.23	42.25	42.21		
Water surface area	$S, th.km^2$	Forecast	3.19	3.21	3.21	3.18	3.17
		Actual	3.20	3.21	3.20		
Water releases into the Large Aral Sea	W, Mm^3	Forecast	69.12	75.17	82.68	6.91	11.23
		Actual	72.75	75.17	65.23		11.2

Information sources

Basin Water Organization “Amu Darya”
Basin Water Organization “Syr Darya”

Aral–Syrdarya Basin Water Authority
Coordination Dispatch Center “Energy”

Website of the Center of Hydrometeorological Service (Uzbekistan) meteo.uz

Central Asia Water and Ecological Knowledge Portal cawater-info.net

Website “Weather and Climate” pogodaiklimat.ru

For detailed analysis of water-related situation by SIC ICWC, please, visit the CAWATER-info portal cawater-info.net/analysis/index.htm